Stable NaCl Tolerance of Tobacco Cells Is Associated with Enhanced Accumulation of Osmotin.
نویسندگان
چکیده
Osmotin is a major protein which accumulates in tobacco cells (Nicotiana tabacum L. var Wisconsin 38) adapted to low water potentials. Quantitation of osmotin levels by immunoblots indicated that cells adapted to 428 millimolar NaCl contained 4 to 30 times the level of osmotin found in unadapted cells, depending on the stage of growth. Unadapted cells accumulated low levels of osmotin with apparent isoelectric points, (pl) of 7.8 and >8.2. Upon transfer of NaCl-adapted cells to medium without NaCl and subsequent growth for many cell generations, the amount of osmotin declined gradually to a level intermediate between that found in adapted and unadapted cells. NaCl-adapted cells grown in the absence of NaCl accumulated both pl forms; however, the form accumulated by cells adapted to NaCl (pl > 8.2) was most abundant. Adapted cells grown in the absence of NaCl exhibited absolute growth rates and NaCl tolerance levels which were intermediate to those of NaCl-adapted and unadapted cells. The association between osmotin accumulation and stable NaCl tolerance indicates that cells with a stable genetic change affecting the accumulation of osmotin are selected during prolonged exposure to high levels of NaCl. This stable alteration in gene expression probably affects salt tolerance.
منابع مشابه
Osmotin gene expression is posttranscriptionally regulated.
Accumulation of both osmotin mRNA and osmotin protein in tissues of tobacco (Nicotiana tabacum L. var Wisconsin 38) is subject to complex developmental control. Osmotin was found to be most abundant in tobacco roots and in tissues of the outer stem comprised primarily of epidermis, and it was less abundant in the corolla. It was a minor protein in other tissues and was undetectable in some tiss...
متن کاملTobacco OPBP1 Enhances Salt Tolerance and Disease Resistance of Transgenic Rice
Osmotin promoter binding protein 1 (OPBP1), an AP2/ERF transcription factor of tobacco, has been demonstrated to function in disease resistance and salt tolerance in tobacco. To increase stress tolerant capability of rice, we generated rice plants with an OPBP1 overexpressing construct. Salinity shock treatment with 250 mM NaCl indicated that most of the OPBP1 transgenic plants can survive, whe...
متن کاملResponses of Transgenic Tobacco (Nicotiana plambaginifolia) Over-Expressing P5CS Gene Underin vitroSalt Stress
Salinity is a major limiting factor for plant growth and development. To evaluate the impact of P5CS gene expression under in vitro salt stress condition, transgenic tobacco (Nicotiana plumbaginifolia) carrying P5CS gene and non-transgenic plants were treated with 0, 100, 150, 200 or 250 mM NaCl for 28 days. Proline content, lipid peroxidation and the activity of some antioxidant enzymes after ...
متن کاملPlant Defense Genes Are Synergistically Induced by Ethylene and Methyl Jasmonate.
Combinations of ethylene and methyl jasmonate (E/MeJA) synergistically induced members of both groups 1 and 5 of the pathogenesis-related (PR) superfamily of defense genes. E/MeJA caused a synergistic induction of PR-1b and osmotin (PR-5) mRNA accumulation in tobacco seedlings. E/MeJA also synergistically activated the osmotin promoter fused to a [beta]-glucuronidase marker gene in a tissue-spe...
متن کاملRegulation of the Osmotin Gene Promoter.
By introducing a chimeric gene fusion of the osmotin promoter and [beta]-glucuronidase into tobacco by Agrobacterium-mediated transformation, we have demonstrated a very specific pattern of temporal and spatial regulation of the osmotin promoter during normal plant development and after adaptation to NaCl. We have found that the osmotin promoter has a very high natural level of activity in matu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 91 3 شماره
صفحات -
تاریخ انتشار 1989